Trivial default constructors X3J16/92-0125, WG21/N0202 Page 1 of 5

Document Number: X3J16/92-0125
WG21/N0202
Date: November 5, 1992
Project: Programming Language C++
Reply to: Tom Pennello
tom@metaware.com

Trivial default constructors

Abstract. We specify when control flow may bypass a declaration of a class object or
an array of class objects. When a class has constructors bears on this issue, and so
we point out inconsistencies in the draft in this regard and repair them. The basic
result is that control flow can bypass a class cbject declaration when there is
“nothing to do" in initializing that object. We make precise the notion of "nothing
to do". This retains a measure of conformance with C.

Motivation

The current draft prohibits control transfer around the declaration of an initialized
object to a point where that object is still in scope. Transfer around an
uninitialized object is OK; the presumption is that nothing happens at the site of the
declaration to provide the object some initial value, so it’s OK to Jump around the
initialization. The question is whether a declaration of a class object contains an
implicit initialization.

struct s {};

struct t { t£{(); }; // User-declared ctor.

struct u : virtual s{};

goto L1l; int x1 = 1; Ll: // Error.

goto L2; int x2; L2: // OK.

goto L3; s x3; L3: // OK?

goto L4; t x4; L4: // Exror. User ctor skipped.
goto LS; u x5; L5: // OK?

The draft actually says that the goto L3 and L5 are both incorrect, because a class
with no user-declared constructor has a compiler- declared default constructor ("one
is generated", in the words of the draft); since this compiler-declared constructor is
then used in the declaration, the declared object is thus initialized and so its
declaration cannot be skipped. One may conclude from the words in the draft that all
declared class objects are initialized. - -

We intend to segregate compiler-declared default constructors that do "interesting"
work from those that don’t, and allow transfers of control over objects initialized
with a non-interesting compiler-declared default constructor.

"Interesting” work includes initializing pointers to virtual function tables and
virtual base classes. For a class with such initialization requirements and with no
user-declared constructor, an implicit (“compiler-generated") default constructor
performs the initialization tasks; if the user declares a constructor, the
initialization code is inserted into that constructor’s definition.

Inconsistencies in the draft

Certain portions of the dra_ft imply that a class always has one or more constructors,



Trivial default constructors X3J16/92-0125, WG21/N0202 Page 2 of 5

and other portions imply that a class might not have constructors. Here are the
statements from the draft:

12.1([P4] A default constructor for a class X is a constructor of class X
that can be called without an argument. A default constructor will be

generated for a class X only if no constructor has been declared for class
X.

Thus if a class has no user-declared constructor, the compiler declares one (presuming
that’s included in the notion of "generated", whatever that means). Or it might mean
that that the default constructor is "generated" only if called; if never called the
class "doesn’t have constructors", and if called, the class then "has constructors".
Furthermore:

12.1[P5] A copy constructor for a class X is a constructor whose first
argument is of type X& or const X& and whose other arguments, if any, all
have defaults, so that it can be called with a single argument of type X.
For example, X::X(const X&) and X::X(X&, int=0) are copy constructors. A
copy constructor is generated if and only if no copy constructor is
declared in the class definition.

Thus we have that both a default constructor and a copy constructor are "generated".
We interpret this to mean they are declared, or at least that a class "has" a
constructor as a result of the generation.

Here is other language in the draft that seems to contradict the implication:
12.6[P1] An object of a class with no constructors,

12.6.1[P3] Arrays of objects of a class with constructors use constructors in
initialization (£f12.1) just like individual objects.

12.6.1[{P4] An object of class M can be a member of a class X only 1if (1) M
does not have a constructor, or

8.4.1([P1] An aggregate is an array or an object of a class (f£9) with no
constructors (£12.1),

These three excerpts indicate that a class can have no constructors. But the class
"struct s{};" has two generated constructors, so we intrepret the class to "have"
constructors.

If we believe that a class always has a constructor, every declaration of a class
object is an initialization. Either

- = {...} is provided (where allowed)

- a parenthesized expn list is provided, in which case a
specific constructor is called

~ the default constructor is invocked

Interestingly, = {...} isn’'t allowed for a class with constructors, and now because
all classes have constructors, = {...} isn’t even an option.

N To prevent the incompatibility we define the notion of "trivial compiler-defined
default constructor", and rule that initialization wvia trivial compiler-defined
default constructor is not considered an initialization for the purposes of control

’ transfer around a declaration. Furthermore, we should fix the rule for initialization



Trivial default constructors X3J16/92-0125, WG21/N0202 Page 3 of 5

by {...} to allow initialization of classes with trivial default constructors. The
intent is to allow the C fragment

struct S {};

goto L; { S x; L: } 2%4’

to work.

The declaration of an object of a class (or array thereof) requiring non-trivial
initialization is considered a declaration with an initialization, even though the
declaration may lack an initializer. That is, having a default constructor invocked is
not an initialization unless the class requires non-trivial initialization.

Bditing proposal:

Insert the following somewhere; perhaps near the discussion of default constructors?

(Recursive) Definition of non-trivial initializatien and non-trivial
implicitly-declared default constructor.

A class having a user-declared constructor or having a non-trivial
implicitly-declared default constructor is said to require non-trivial
initialization.

An implicitly-declared default constructor is non-trivial iff either
- the class has direct virtual bases or virtual functions

- the class has direct bases or members of a class (or array
thereof) requiring non-trivial initialization.

Then we change the statements about the "generation" of constructors, saying instead
that implicit constructors are declared where the user doesn’t:

Change

12.1[P4] A default constructor for a class X 1is a constructor of class X that can be
called without an argument. A default constructor will be generated for a class X
only if no constructor has been declared for class X.

12.1{P5] ... A copy constructor is generated if and only if no copy constructor is
declared in the class definition.

to

12.1[P4] A default constructor for a class X is a constructor of class X that can be
called without an argqument. If no constructor has been declared for class X, a
default constructor is implicitly declared. The definition for an implicitly
declared constructor is supplied if that constructor is called. The definition may
violate other constraints; see ??? [is there a discussion of this? such as
attempting to call a private base constructor.].

12.1[p5] ... If no copy constructor is declared, a copy constructor is implicitly
declared. The definition for an implicitly declared copy constructor is supplied if

that copy constructor is called. The definition may violate other constraints; see
12.8([PS].



Trivial default constructors X3J16/92-0125, WG21/N0202 Page 4 of 5

Now we change the uses of the implicit constructors in other text.
Change the text

12.6 Initialization

1 An object of a class with no constructors, no private or protected members, no
virtual functions, and no base classes can be initialized using an initializer list;
see £8.4.1. An object of a class with a constructor must either be initialized or
have a default constructor (£12.1) . The default constructor is used for objects
that are not explicitly initialized.

to

12.6 1Initialization

1 An object of a class (or array thereof) with no private or protected non-static data
members and that does not require non-trivial initialization can be initialized
using an initializer list; see £8.4.1. Aan object of a class (or array thereof) with
a user-declared constructor must either be initialized or have a default constructor
(£12.1) (whether user- or compiler-declared). The default constructor is used for
an object (or array thereof) that is not explicitly initialized.

(Note: I relaxed the constraint so that if a class has all public non-static data
members it still is in the running for {} initialization. Previously a private
member function would prohibit its {} init.)

Change

12.6.1{P3] Arrays of objects of a class with constructors use constructors in
initialization (£12.1) just like individual objects. If there are fewer initializers
in the list than elements in the array, the default constructor (£12.1) is used. If
there is no default constructor the initializer- clause must be complete.

12.6.1{P4] An object of class M can be a member of a class X only if (1) M does not
have a constructor, or (2) M has a default constructor, or (3) X has a constructor
and if every constructor of class X specifies a ctor-initializer (£12.6.2) for that
member. In case 2 the default constructor is called when the aggregate is created.

to

12.6.1[P3] Arrays of objects of a class use constructors in initialization (£12.1)
Just as do individual objects. If there are fewer initializers in the list than
elements in the array, a default constructor must be declared (whether by the
compiler or the user), and it is used; otherwise, the initializer-clause must be —
complete.

12.6.1{P4] An object of class M can be a member of a class X only if (1) M has a
default constructor or (2) X has a user-declared constructor and every user-declared
constructor of class X specifies a ctor-initializer (£12.6.2) for that member. 1In
case 1 the default constructor is called when the aggregate is created.

Change
5.3.3[P9) (new) If a class has a constructor an object of that class can be created by
new only if suitable arguments are provided or if the class has a default

constructor (£12.1).

5.3.3[P10] ... Arrays of objects of a class with constructors can be created by
operator new only if the class has a default constructor (£12.1).



Trivial default constructors X3J16/92-0125, WG21/N0202 Page 5 of §

to

5.3.3[P9] (new) An object of a class can be created by new only 1f suitable arguments
are provided to the class’'s constructors, or if the class has a default constructor
(£12.1).
(Note: this means that "struct s{}; s x; s y(x);" is allowed on the grounds that
class s has an implicitly declared copy constructor, to which the argument x is
being provided.)

5.3.3[P10] ... Arrays of objects of a class can be created by operator new only if the
class has a default constructor (£12.1).

(Note: C-style structs have an ilmplicitly-declared default constructor.)

Change

12.6.2[P3] ...If a constructor of the most derived class does not specify a
mem-initializer for a virtual base class then that virtual base class must have a
default constructor or no constructors.

to

12.6.2[P3] ...If a constructor of the most derived class does not specify a
mem-initializer for a virtual base class then that virtual base class must have a
default constructor.

Change

8.4.1[P1] An aggregate is an array or an object of a class (£9) with no constructors
(£12.1), no private or protected members (fl1l),

8.4.1[P8] The initializer for a union with no constructor is either a single
expression of the same type, ...

to

8.4.1[P1] An aggregate is an array or an object of a class (£9) with no user-declared
constructors (£12.1), no private or protected members (f11),

8.4.1[P8] The initializer for a union with no user-declared constructor is either a-
single expression of the same type,

I have used a text search to find all the places in the draft that say "no
constructor” but I may have missed some; they should still be edited.

There are a few other places in the draft where mention is made of the "generated copy
constructor”; these should be replaced by the "implicitly declared copy constructor".
Same goes for the generated default constructor.

Acknowledgements. Thanks to Randy Swan who provided the on-line ASCII text of the
draft, without which the writing of this paper would have been quite tedious.



